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Brillouin–Wigner perturbation theory is revisited using the Lippmann–Schwinger equation and applied
to the H2O molecule. The results obtained are examined from the view-point of the development of
practical computational methods.

In up to date quantum chemistry the many-body methods like many-body Rayleigh–
Schrödinger perturbation theory (MB RSPT) and coupled cluster (CC) method play an
important role. For nondegenerate systems in which the ground state is well described
by a single determinant MB RSPT and particularly CC method are very efficient for the
description of correlation energies of atoms and molecules as well as for the calculation
of various properties. An appealing feature of these methods is the fact that they scale
properly with the number of particles. This is the consequence of application of the
linked cluster theorem in these methods. Possibly it is just this reason why less atten-
tion has been paid to Brillouin–Wigner perturbation theory (BWPT). Beside the size
inconsistency, the finite order BWPT has other seemingly inferior features: the pertur-
bation expressions depend on the exact energy and the convergence of BWPT is be-
lieved to be slow. Much larger attention was paid to BWPT in older works dealing with
the nuclear matter1,2. In quantum chemistry BWPT was studied by Löwdin in his
monumental series “Studies in Perturbation Theory” in connection with inner projec-
tion techniques3–6. Related to this problem is the work of Brandas and Bartlett7,8. Re-
cently also Cizek and coworkers pointed out the connection of the inner projection and
BWPT (refs9–11). However we have benefited most directly from papers12–14 dealing
with the CI+Bk method and showing its relationship to BWPT.

The purpose of this paper is twofold. Firstly, we reformulate BWPT on the basis of
Lippmann–Schwinger equation and we try to follow the procedure usual in scattering
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theory. Our objective is to arrive at very high or infinite orders of BWPT, in contrast to
the quoted CI treatments12–14 focused on excited states and low orders of BWPT.
Secondly, we try to demonstrate the utility of this approach in practical calculations.
Although the use of BWPT in this context is not new, we want to show that it might be
more practical than the corresponding approaches based on MB RSPT/CC theory, par-
ticularly in treatments including higher excitations, excited states, and near degeneracy
states.

THEORETICAL

As usual in perturbation theory we assume that in Schrödinger equation

ĤΨi = EiΨi (1)

we are able to split the Hamiltonian Ĥ into two parts, namely

Ĥ = Ĥ0 + Ŵ  , (2)

where Ĥ0 is the unperturbed Hamiltonian and Ŵ is the perturbation. We will assume
Epstein–Nesbet15 (EN) and Møller–Plesset (MP) partitionings. Further we assume that
we know the solution of the unperturbed eigenvalue problem

Ĥ0 | Φi〉  = Ei | Φi〉 (3)

Let Φi be configuration state functions constructed from Hartree–Fock molecular orbi-
tals. Then according to the BWPT expansion1 the exact wave function (1) for the
ground state is given by

Ψ = (1 + Q̂0Ŵ + Q̂0ŴQ̂0Ŵ +…) | Φ0〉   , (4)

and the exact energy of the ground state is given as

E = 〈Φ0 | Ĥ
0 | Φ0〉  + 〈Φ0 | Ŵ | Φ0〉  + 〈Φ0 | ŴQ̂0Ŵ | Φ0〉 + … (5)

or
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E = 〈Φ0 | Ĥ
0 | Φ0〉 + 〈Φ0 | Ŵ + ŴQ̂0Ŵ + … | Φ0〉  . (6)

Let us introduce in formal analogy with the scattering theory the operator T̂ as

T̂ = Ŵ + ŴQ̂0Ŵ + …  , (7)

which also may be written in the form

T̂ = Ŵ + ŴQ̂0T̂  . (8)

This equation is known in scattering theory as Lippmann–Schwinger equation4–16. It is
interesting to note that in many-electron theory this equation was used to generate Bril-
louin–Wigner perturbation series and it was not used as a recurrent expression which
can be brought into matrix form and applied to practical calculations. From Eq. (8) we
get for the operator T̂ the following relation

T̂ = (1 − ŴQ̂0)−1Ŵ  . (9)

In BWPT the propagator has the form

Q̂0 = ∑
 | Φi〉〈Φ i | 

E − Ei
i≠0

  . (10)

Using Eq. (7) we can now rewrite Eq. (6) as

E = 〈Φ0 | Ĥ
0 | Φ0〉  + 〈Φ0 | T̂ | Φ0〉  , (11)

and the wave function as

| Ψ〉 = (1 + Q̂0T̂) | Φ0〉  . (12)
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Our task is to bring Eq. (11) to a form suitable for practical calculations. We sub-
stitute from Eqs (8) and (10) into Eq. (11),

E = 〈Φ0 | Ĥ0 | Φ0〉 + 〈Φ0 | Ŵ | Φ0〉 + ∑ 
i≠0

〈Φ0 | Ŵ | Φi〉〈Φ i | T̂ | Φ0〉
E − Ei

  . (13)

Let us now introduce the following notation

W0i = 〈Φ0 | Ŵ | Φi 〉   , (14)

and

Ti0 = 〈Φi | T̂ | Φ0〉  . (15)

Then we may write Eq. (13) as

E = H00
0  + W00 + ∑

W0iTi0

E − Ei
i≠0

  . (16)

This equation cannot be used to calculate the energy E because except the energy E we
do not know the matrix elements Ti0. But using Eq. (8) we may write

〈Φi | T̂ | Φ0〉 = 〈Φi | Ŵ | Φ0〉  + ∑ 
j≠0

〈Φi | Ŵ | Φj〉〈Φ j | T̂ | Φ0〉
E − Ej

  , (17)

which in the notation of Eqs (14) and (15) becomes

Ti0 = Wi0 + ∑ 
j≠0

WijTj0

E − Ej
  . (18)

If we realize that

〈Φi | T̂ | Φ0〉  = 〈Φ0 | T̂ | Φi〉  , (19)

we also have
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〈Φi | T̂ | Φ0〉  = 〈Φ0 | Ŵ | Φi〉  + ∑ 
j≠0

〈Φ0 | Ŵ | Φj〉〈Φ j | T̂ | Φi〉
E − Ej

(20)

or

Ti0 = W0i + ∑ 
j≠0

W0jTji

E − Ej
  , (21)

where

Tji = 〈Φj | T̂ | Φi〉   . (22)

Again using Eq. (8) we obtain

Tji = 〈Φj | Ŵ | Φi〉  + ∑ 
k≠0

〈Φj | Ŵ | Φk〉〈Φ k | T̂ | Φi〉
E − Ek

  , (23)

which can be rewritten also as

Tji = Wji + ∑ 
k≠0

WjkTki

E − Ek
  , (24)

and in the matrix notation as

T = W + UT  , (25)

where the matrix U is defined as

Ujk = 
Wjk

E − Ek
  . (26)

From Eq. (25) we have

T = (1 − U)−1W  . (27)
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This equation might be used for the expression of the wave function (12). It should be
noted that the analogy of Eq. (27) with the Lippmann–Schwinger equation expressed by
Eq. (9) is only formal. In scattering calculation the W matrix, expressed in a Gaussian basis
set, has the same size in any order of the BWPT expansion. On contrary, in electron
correlation problem the size of W matrix depends on the particular order of the pertur-
bation expansion.

Equations (16) and (18) can be used to calculate the energy E. We may rewrite them
into the form

∑ 
j≠0

(δij − Uij)Tj0 = Wi0  , (28)

which is a system of linear equations for Tj0 elements. This system of equations and Eq. (16)
in the following form

E = H00
0  + W00 + ∑ 

i≠0

U0iTi0 (29)

represent a system of coupled equations for E which can be solved iteratively in the
following way: set E = H00, get the U matrix from Eq. (26), solve the system of linear
equations (28) for Tj0 and calculate new E from Eq. (29). This procedure is repeated till
selfconsistency. It is of course profitable to use a more educated guess to E, for
example the CI-SD energy.

Subtract the SCF energy of the ground state 〈Φ0 | Ĥ | Φ0〉 from all diagonal H matrix
elements so that E becomes the correlation energy. Then for the Epstein–Nesbet15 par-
titioning of the Hamiltonian the H0 and W matrix elements are given as

〈Φi | Ĥ
0 | Φj〉  = 0  ,  i ≠ j  , (30)

and

〈Φi | Ŵ | Φj〉  = (1 − δij)〈Φi | Ĥ | Φj〉  . (31)

Energy Ei in the propagator (10) and in the U matrix elements (26) has the meaning of
the SCF excitation energy

Ei = 〈Φi | Ĥ | Φi〉 − 〈Φ0 | Ĥ | Φ0〉   . (32)
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For the Møller–Plesset partitioning of the Hamiltonian we have

〈Φi | Ĥ
0 | Φj〉  = δij〈Φi | F̂ | Φj〉   , (33)

where F̂  is the Hartree–Fock operator,

〈Φi | Ŵ | Φj〉 = 〈Φi | Ĥ | Φj〉  − δij〈Φi | F̂ | Φj〉   , (34)

and

Ei = 〈Φi | F̂ | Φi〉  . (35)

Upon substitution of Eqs (30)–(35) in Eqs (28) and (29) the EN and MP partitionings
of the Hamiltonian give equivalent systems of equations, which in turn give the same
result in any iteration. Distinguishing between the two Hamiltonian partitionings is
therefore irrelevant in context of Eqs (28) and (29). When the direct BWPT expansion
(5) is used, the EN and MP partitionings of the Hamiltonian give only the same en-
ergies at the infinite order.

Our Eq. (18) is the same as those of the linearized CC approaches, except that the
correlation energy is absorbed in the energy denominator. Also, the approach repre-
sented by Eqs (28) and (29) is equivalent to CI calculation for the particular level of
excitation. For example if we restrict the W matrix to single, double, triple and quad-
ruple excitations, we get the CI-SDTQ energies. This of course does not bring any
advantage. We believe, however, that the method so formulated is open for introducing
various approximations which could reduce computational effort and only cause a
small loss in accuracy. We present such an approach in which we neglect triple–triple,
triple–quadruple and quadruple–quadruple off-diagonal Wij elements for configuration
state functions i and j that differ in their orbital part. This resembles the CI-Bk method
but the difference is that in application of the Bk approximation to CI-SD all off-diagonal
Wij elements were disregarded12–14. We will show in a later paper that our way of using
the Bk approximation has a firmer theoretical basis. Hereafter we will refer to this ap-
proximation as to LS-Bk, indicating that it combines the merits of the Lippmann–
Schwinger and the CI-Bk approach. The W matrix in the LS-Bk approximation has a
quasi-diagonal form in the block of triples and quadruples. Instead of using the iterative
scheme represented by Eqs (28) and (29), we considered it therefore more practical to
use a modified GUGA CI procedure, in which we eliminated the loops for neglected Wij

elements.
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RESULTS

For testing the LS-Bk approximation we selected the water molecule because of a popular
benchmark by Saxe et al.17. Since we need the CI-SDTQ energies as a standard, we
quote the erratum18 to this benchmark. Also we quote the later papers19,20 which provide CI,
MB RSPT and CC energies for geometries with the stretched O–H bond at R = 1.5Re and
2.0Re. Our LS-Bk data are compared with the literature data obtained by other methods
in Table I and Fig. 1.

Re                          1.5Re                       2.0Re

 0.07

 0.05

 0.03

 0.01

–0.01

∆E, a.u.

FIG 1.
Energies of H2O relative to the full-CI energy.
The calculations were performed at three dif-
ferent OH bond lengths, using the DZ basis set
and the following methods: ❐  CI-SD
(refs17,19), * MBPT(4)-SDTQ (ref.20), ∆ CC-
SD (ref.20), ❍  CC-SDT-1 (ref.21), ✧  CI-
SDTQ (refs18,19), ●  LS-Bk

TABLE I
Energies of H2O (in a.u.) obtained with the double-zeta basis set by different methods at three different
OH bond lengths

   Method Re 1.5Re 2.0Re

   SCF –76.009838 –75.803529 –75.595180

   CI-SDa –76.150015 –75.992140 –75.844817

   LS-Bk –76.158669 –76.016617 –75.907824

   CI-SDTQa –76.157626 –76.013418 –75.900896

   MBPT(4)-SDTQb –76.156876 –76.008395 –75.888867

   CC-SDb –76.156076 –76.008931 –75.895913

   CC-SDT-1c –76.157414 –76.013067 –75.910821

   FCIa –76.157866 –76.014521 –75.905247

a Taken from refs17,18 for Re and from ref.19 for 1.5Re and 2.0Re; 
b ref.20; c ref.21.
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DISCUSSION

As we have said at the very beginning the purpose of this paper was to revise the
BWPT and to bring it for use in practical calculations. This was done using the
Lippmann–Schwinger equation (9). Bringing the Lippmann–Schwinger equation into
the matrix form we got the system of equations for T matrix elements (18), which can
be solved iteratively by means of Eqs (28) and (29). This approach is more efficient
than a direct BWPT expansion (5). Computationally, the crucial step of this procedure
is the evaluation of the W matrix elements. As follows from their definition in Eq. (31)
they represent the matrix elements for the two-particle operator of the Hamiltonian (2).
It is therefore natural to use existing CI programs for their evaluation. This implies that
we use spin adapted configuration state functions, in contrast to traditional MB RSPT
and CC. Efficient use of the LS-Bk approximation of course requires a rewriting the CI
code for skipping the evaluation of T–T, T–Q and Q–Q Hamiltonian matrix elements,
or efficient construction of any part of the Hamiltonian matrix as it is required by the
particular approximation assumed. Only then it will be possible to decide if LS-Bk or
other BWPT variants are liable to become more profitable than the CC methods.

In all other respects the results are promising. As Table I and Fig. 1 show LS-Bk

compares favorably with CI-SDTQ and full CI. In contrast to the iterative scheme with
the full W matrix, LS-Bk does not furnish the upper bound of the energy. As it is seen
in Table I, our LS-Bk energies for H2O are below the full CI energies. However the
respective difference is small, and what is more important, it remains almost constant
as the OH bonds are stretched (Fig. 1). Size-inconsistency of the finite order BWPT
was a matter of concern. We believe, however, that the presence of D–Q W matrix
elements should cancel a major part of the size-consistency error of the CI-SD ap-
proach. This will be tested in our later paper. So far we have shown22 that the size-in-
consistency may be eliminated rigorously by introducing wave operator and Bloch
equation in Brillouin–Wigner form.

Finally some other merits of LS-Bk should be noted. We mean those that are not so
easily met in the CC theory. A close relation of LS-Bk to CI provides a direct way to
the wave function and the properties. Also extension to open shell systems, multirefe-
rence formulation and excited states is straightforward. A problem of intruder states in
quasidegenerate multireference case seems to be avoided. The gradient of energy
should not be more difficult to obtain than with the CI wave function. Finally we would
like to emphasize the clarity and simplicity of the formulation of the theory. It permits
easy implementation of various approximations leading to variants of BWPT that are
close by its value to different MB RSPT/CC methods.
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